
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On bioconvective chemically reactive flow involving applications of magnetohydrodynamic and radiation

Background and objective: Bioconvective flow of Reiner-Rivlin liquid subject to motile microorganism is communicated. Concept of magnetohydrodynamics for low magnetic Reynolds number is highlighted. Convective constraints for heat and mass are implemented. Thermal expression consists of dissipation and radiation. Joule heating and heat generation/absorption impacts are entertained. Brownian motion and thermophoresis behaviors are studied. Binary chemical reaction and motile microorganisms are taken. Methodology: Nonlinear expressions are converted into dimensionless equations through appropriate transformations. Nonlinear differential system is numerically computed. Results: Solutions are analyzed for velocity, microorganisms’ field, concentration and temperature. Coefficient of skin friction, microorganism density number, heat transport rate and concentration gradient via emerging variables are examined. Higher magnetic field has opposite impact on coefficient of skin friction and velocity. An increase in thermal field is detected for radiation and magnetic variables. Larger thermal Biot number intensifies the temperature. Larger approximation of solutal Biot number leads to enhance concentration. There is a reverse trend for heat transfer rate through radiation and random motion variables. Brownian motion and thermophoresis variables for concentration have opposite impacts. An increasing trend of solutal Biot number and Sherwood numbers is observed. Larger bioconvective Lewis number corresponds to boost up microorganism density number.
- King Abdulaziz University Saudi Arabia
- King Abdulaziz University Saudi Arabia
- Quaid-i-Azam University Pakistan
Heat generation/absorption, Bioconvection nanofluid flow, Convective conditions, Engineering (General). Civil engineering (General), Reiner-Rivlin fluid model, Ohmic heating and chemical reaction, TA1-2040
Heat generation/absorption, Bioconvection nanofluid flow, Convective conditions, Engineering (General). Civil engineering (General), Reiner-Rivlin fluid model, Ohmic heating and chemical reaction, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
