
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Viscous dissipation and Joule heating effects on the unsteady micropolar fluid flow past a horizontal surface of revolution

Cette étude vise à étudier l'effet Joule, le rayonnement thermique et les effets de Coriolis dans l'écoulement micropolaire de magnétohydrodynamique instable (MHD) sur une feuille instable en 3D. Un champ magnétique est généralement appliqué à la surface ; en outre, on suppose que le fluide conduit l'électricité. D'autres micro-rotations sont également envisagées. Le problème physique est résolu à l'aide des équations fondamentales, et la complexité du problème est réduite à l'aide de variables de similarité. Dans la présente approche, la méthode d'analyse par homotopie (HAM) est utilisée. La chaleur, le facteur de frottement de la peau, la température, les micro-mouvements et la vitesse associés aux paramètres émergents et aux taux de transfert sont pris en compte. L'épaisseur de la couche limite augmente à mesure que le paramètre de vorticité augmente. Lorsque l'amplitude du champ magnétique augmente, le coefficient de frottement cutané diminue. Les variables d'état sont approximées jusqu'à six décimales numériquement. Les valeurs numériques de −f″(0) et −θ′(0) sont calculées avec des décimales plus élevées et comparées à la littérature disponible pour valider les résultats. Les résultats obtenus sont comparés à la littérature disponible ; les résultats sont ici corroborés, et la performance du JAMBON est démontrée.
Este estudio tiene como objetivo investigar el efecto Joule, la radiación térmica y los efectos de Coriolis en el flujo micropolar de magnetohidrodinámica inestable (MHD) sobre una lámina inestable en 3-D. Normalmente se aplica un campo magnético a la superficie; además, se supone que el fluido está conduciendo electricidad. También se consideran otras microrrotaciones. El problema físico se resuelve con la ayuda de las ecuaciones fundamentales, y la complejidad del problema se reduce con el uso de variables de similitud. En el presente enfoque, se emplea el método de análisis de homotopía (HAM). Se considera el calor, el factor de fricción de la piel, la temperatura, los micro movimientos y la velocidad asociados con los parámetros emergentes y las tasas de transferencia. El espesor de la capa límite aumenta a medida que aumenta el parámetro de vorticidad. Cuando la magnitud del campo magnético aumenta, el coeficiente de fricción de la piel disminuye. Las variables de estado se aproximan hasta seis decimales numéricamente. Los valores numéricos de −f″(0) y −θ′(0) se calculan con decimales más altos y se comparan con la literatura disponible para validar los resultados. Los resultados obtenidos se comparan con la literatura disponible; los resultados aquí se corroboran y se demuestra el rendimiento del JAMÓN.
This study aims to investigate the Joule effect, thermal radiation, and Coriolis effects in unsteady magnetohydrodynamics (MHD) micropolar flow over a 3-D unstable sheet. A magnetic field is typically applied to the surface; additionally, it is assumed that the fluid is conducting electricity. Other micro-rotations are also considered. The physical issue is resolved with the help of the fundamental equations, and the issue's complexity is reduced with the use of similarity variables. In the present approach, the homotopy analysis method (HAM) is employed. The heat, skin's friction factor, temperature, micro movements, and velocity associated with the emerging parameters and transfer rates are considered. The boundary layer thickness is increased as the parameter of vorticity increases. When the magnitude of the magnetic field increases, the skin friction coefficient decreases. The state variables are approximated up to six decimal places numerically. The numerical values of −f″(0) and −θ′(0) are computed to higher decimal places and compared with the available literature to validate the results. The outcomes obtained are compared with the available literature; the results here are corroborated, and the performance of the HAM is demonstrated.
تهدف هذه الدراسة إلى التحقيق في تأثير الجول، والإشعاع الحراري، وآثار كوريوليس في تدفق هيدروديناميكي مغناطيسي غير مستقر (MHD) على ورقة غير مستقرة ثلاثية الأبعاد. عادة ما يتم تطبيق مجال مغناطيسي على السطح ؛ بالإضافة إلى ذلك، من المفترض أن السائل يوصل الكهرباء. كما يتم النظر في الدورات الدقيقة الأخرى. يتم حل المشكلة المادية بمساعدة المعادلات الأساسية، ويتم تقليل تعقيد المشكلة باستخدام متغيرات التشابه. في النهج الحالي، يتم استخدام طريقة تحليل المثلية (HAM). يتم النظر في الحرارة وعامل احتكاك الجلد ودرجة الحرارة والحركات الدقيقة والسرعة المرتبطة بالمعلمات الناشئة ومعدلات النقل. يزداد سمك الطبقة الحدودية مع زيادة معامل الدوامة. عندما يزداد حجم المجال المغناطيسي، ينخفض معامل احتكاك الجلد. يتم تقريب متغيرات الحالة حتى ستة منازل عشرية عدديًا. يتم حساب القيم العددية لـ −f″(0) و −θ′(0) إلى منازل عشرية أعلى ومقارنتها بالأدبيات المتاحة للتحقق من صحة النتائج. تتم مقارنة النتائج التي تم الحصول عليها مع الأدبيات المتاحة ؛ يتم تأكيد النتائج هنا، ويتم إظهار أداء لحم الخنزير.
- King Saud University Saudi Arabia
- Hazara University Pakistan
- Abdul Wali Khan University Mardan Pakistan
- Abdul Wali Khan University Mardan Pakistan
- Hazara University Pakistan
Heat Transfer Enhancement in Nanofluids, Composite material, Viscous dissipation, Turbulent Flows and Vortex Dynamics, Hydrodynamic Turbulence, Biomedical Engineering, Computational Mechanics, Geometry, Thermal energy, FOS: Medical engineering, Mechanics, Environmental science, Engineering, FOS: Mathematics, Paraboloid, FOS: Chemical engineering, Fluid Flow and Transfer Processes, Physics, Joule heating, Chemical Engineering, Engineering (General). Civil engineering (General), Materials science, Magnetic field, Rheology of Complex Fluids and Polymers, Microfluidic Rheometry, Dissipation, Physical Sciences, Coriolis effect, Thermodynamics, Surface (topology), TA1-2040, Flow (mathematics), Viscous liquid, Mathematics
Heat Transfer Enhancement in Nanofluids, Composite material, Viscous dissipation, Turbulent Flows and Vortex Dynamics, Hydrodynamic Turbulence, Biomedical Engineering, Computational Mechanics, Geometry, Thermal energy, FOS: Medical engineering, Mechanics, Environmental science, Engineering, FOS: Mathematics, Paraboloid, FOS: Chemical engineering, Fluid Flow and Transfer Processes, Physics, Joule heating, Chemical Engineering, Engineering (General). Civil engineering (General), Materials science, Magnetic field, Rheology of Complex Fluids and Polymers, Microfluidic Rheometry, Dissipation, Physical Sciences, Coriolis effect, Thermodynamics, Surface (topology), TA1-2040, Flow (mathematics), Viscous liquid, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
