Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Industrial ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Industrial and Engineering Polymer Research
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review

Authors: Resego Phiri; Sanjay Mavinkere Rangappa; Suchart Siengchin; Oluseyi Philip Oladijo; Hom Nath Dhakal;

Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review

Abstract

The exhaustion of available natural resources and rising concerns about the environment have prompted a growing desire to discover innovative ways to produce environmentally friendly materials. In an effort to alleviate environmental issues connected to the disposal of agricultural waste, many studies have engaged on research pertaining to agricultural waste management. Every year, there are enormous amounts of agro based waste created, which is a major issue from an economic and environmental standpoint. These wastes can be utilized as secondary raw materials to create value-added products in accordance with the circular economy's guiding principles. The exploitation of natural agricultural wastes has become critical for the development of sustainable biopolymer-based composites for lightweight applications. To this extent, this review presents an overview of the development and utilization of agricultural wastes to create biopolymers building blocks to be coupled with natural reinforcements for the fabrication of sustainable bio composites for lightweight applications. Common agricultural derived biopolymers are discussed. This review also highlights major bio composite fabrication methodologies and potential applications including challenges and opportunities in the development of sustainable biopolymer-based composites from agricultural waste biomass. It was concluded that the development of sustainable biopolymer-based composites from agricultural biomass offers a promising route towards a more environmentally friendly future.

Keywords

Bio fillers, Lightweight applications, Engineering (General). Civil engineering (General), Biopolymer-based composites, Agricultural waste management, TP1080-1185, Sustainability, Polymers and polymer manufacture, TA1-2040

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research