
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane

The freshwater microalgae species Chlorella kessleri and Chlorella vulgaris, and the marine microalgae species Nannochloropsis oculata were cultivated in urban wastewater. The freshwater species demonstrated the possibility of growing in urban wastewater reaching high biomass production and nutrient removal when cultured in batch mode using a flat-panel airlift photobioreactor. Both microalgae species reached high biomass dry weights, 2.70 ± 0.08 g/L and 2.91 ± 0.02 g/L respectively, accompanied by nitrogen concentration reduction around 96% and 95%, and a phosphorous concentration reduction around 99% and 98% respectively. N. oculata was able to uptake nutrients from wastewater to grow but with less efficiency, indicating the need of microalgae acclimation or process optimisation to achieve high nutrient removals. During C. kessleri and C. vulgaris cultivation, the nitrogen consumption led to a progressive N-starvation process which increased the microalgae potential for biofuels production; both species produced 346 ± 3 mL CH 4 /g VS and 415 ± 2 mL CH 4 /g VS during anaerobic digestion, and 7.4 ± 0.2 g Biodiesel /100 g VS and 11.3 ± 0.1 g Biodiesel /100 g VS respectively.
570, [SDV.BIO]Life Sciences [q-bio]/Biotechnology, Nitrogen starvation, Microalgae cultivation, Municipal wastewater, Nutrient removal, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, Biodiesel, Methane
570, [SDV.BIO]Life Sciences [q-bio]/Biotechnology, Nitrogen starvation, Microalgae cultivation, Municipal wastewater, Nutrient removal, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, Biodiesel, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).167 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
