
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical modeling of Galfenol magnetostrictive response

Abstract Specimens of magnetostrictive materials can transform a variation of their stress-induced size into a variation of a produced magnetic field and vice versa. These phenomena are utilized in magnetostrictive energy harvesters, vibration sensors, etc. Mathematical models of magnetostrictive materials vary from complex hysteretic models to relatively simple non-hysteretic models. In this paper, three mathematical models of Galfenol are considered, namely a non-hysteretic model, a non-hysteretic model with a feedback loop, and a model where the hysteresis is represented by the Preisach operator with a simplified Preisach density function. The parameters of these models are identified from measured magnetic and magneto-elastic curves. All the models are applicable in technical praxis. The output of the non-hysteretic model with a feedback loop best fits the measured data and, to some extent, reproduces fine features of magneto-elastic curves.
- Academy of Sciences Library Czech Republic
- Czech Academy of Sciences Czech Republic
- Czech Technical University in Prague Czech Republic
- Academy of Sciences Library Czech Republic
energy harvesting, hysteresis, magnetostriction
energy harvesting, hysteresis, magnetostriction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
