Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2024
License: CC BY
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining short-term breath measurements to develop methane prediction equations from cow milk mid-infrared spectra

Authors: Fresco, Solène; Vanlierde, A.; Boichard, Didier; Lefebvre, Rachel; Gaborit, M.; Bore, R.; Fritz, Sebastien; +2 Authors

Combining short-term breath measurements to develop methane prediction equations from cow milk mid-infrared spectra

Abstract

Predicting methane (CH4) emission from milk mid-infrared (MIR) spectra provides large amounts of data which is necessary for genomic selection. Recent prediction equations were developed using the GreenFeed system, which required averaging multiple CH4 measurements to obtain an accurate estimate, resulting in large data loss when animals unfrequently visit the GreenFeed. This study aimed to determine if calibrating equations on CH4 emissions corrected for diurnal variations or modeled throughout lactation would improve the accuracy of the predictions by reducing data loss compared with standard averaging methods used with GreenFeed data. The calibration dataset included 1 822 spectra from 235 cows (Holstein, Montbéliarde, and Abondance), and the validation dataset included 104 spectra from 46 (Holstein and Montbéliarde). The predictive ability of the equations calibrated on MIR spectra only was low to moderate (R2v = 0.22-0.36, RMSE = 57-70 g/d). Equations using CH4 averages that had been pre-corrected for diurnal variations tended to perform better, especially with respect to the error of prediction. Furthermore, pre-correcting CH4 values allowed to use all the data available without requiring a minimum number of spot measures at the GreenFeed device for calculating averages. This study provides advice for developing new prediction equations, in addition to a new set of equations based on a large and diverse population.

Country
France
Keywords

Mitigation, Spectrophotometry, Infrared, Holstein dairy cow, [SDV.GEN.GA] Life Sciences [q-bio]/Genetics/Animal genetics, SF1-1100, 630, Animal culture, Diurnal variation, [SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics, Milk, Breath Tests, GreenFeed system, Greenhouse gas emissions, Calibration, Animals, Lactation, Cattle, Female, Methane, Mitigation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold
Related to Research communities
Energy Research