Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2018
Data sources: HAL-CEA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison of curium, neptunium and americium transmutation feasibility

Authors: Kooyman, Timothée; Buiron, Laurent; Rimpault, G.;

A comparison of curium, neptunium and americium transmutation feasibility

Abstract

Abstract Minor actinides transmutation is the process of decreasing the long term radiotoxicity of the nuclear spent fuel by submitting it to a neutron flux so as to achieve fission of the heavy nuclides concerned. In the case of a closed fuel cycle, minor actinides are the main contributors to the spent fuel radiotoxicity after a few centuries. The isotopic vector of the minor actinides feed to be transmuted depends heavily on the fuel cycle considered: PWRs with UOX fuels will mainly lead to neptunium and americium production while MOX fueled reactors will produce mainly americium and curium. Americium is the main element currently considered for transmutation due to its relatively short half-life and significant production level. On the other hand, neptunium is seen as a secondary candidate for transmutation due to its very long half life and low activity while Curium transmutation is generally ruled out due to the high activity of curium isotopes. Two modes of transmutation in fast reactors are generally opposed, namely the homogeneous approach in which minor actinides are directly mixed with the fuel while in the heterogeneous approach, the minor actinides are loaded in dedicated targets. It is shown in this paper that the impacts on the fuel cycle of heterogeneous americium transmutation are similar to the one of homogeneous curium transmutation. It is further shown that given the quantities of curium in the fuel cycle, only a limited number of reactors would be required to effectively transmute the curium production of fast reactors with americium bearing blankets. Curium transmutation thus appears a feasible option in a completely closed fuel cycle without significantly higher fuel cycle impacts than with only americium transmutation. It is finally verified that neptunium transmutation can be achieved regardless of the approach considered.

Country
France
Related Organizations
Keywords

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th], [PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th], [PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex], [PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex], Curium fuel cycle, Fuel cycle, Heterogeneous transmutation, Homogeneous transmutation, Minor actinides transmutation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green
bronze