Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Validation of lattice physics code STREAM for predicting pressurized water reactor spent nuclear fuel isotopic inventory

Authors: orcid Bamidele Ebiwonjumi;
Bamidele Ebiwonjumi
ORCID
Harvested from ORCID Public Data File

Bamidele Ebiwonjumi in OpenAIRE
orcid Sooyoung Choi;
Sooyoung Choi
ORCID
Harvested from ORCID Public Data File

Sooyoung Choi in OpenAIRE
orcid Matthieu Lemaire;
Matthieu Lemaire
ORCID
Harvested from ORCID Public Data File

Matthieu Lemaire in OpenAIRE
orcid bw Deokjung Lee;
Deokjung Lee
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Deokjung Lee in OpenAIRE
Ho Cheol Shin;

Validation of lattice physics code STREAM for predicting pressurized water reactor spent nuclear fuel isotopic inventory

Abstract

Abstract This work investigates the depletion capability implemented in lattice physics code STREAM for the prediction of pressurized water reactor (PWR) uranium dioxide (UO2) spent nuclear fuel (SNF) isotopic inventory. The validation of this capability is performed by comparison of STREAM calculation results to measured SNF assay data obtained from PWRs Takahama-3, Calvert Cliffs and GKN II. The depletion analysis is conducted with the ENDF/B-VII.0 library and uses a pin cell model of the fuel rods from which the fuel samples were taken. The Chebyshev Rational Approximation Method (CRAM) is used to solve the depletion equation with about 1300–1600 isotopes in the depletion chain. 16 actinides and 23 fission products are analyzed in 14 spent UO2 fuel samples. The actinides are isotopes of uranium, neptunium, plutonium, americium and curium. The fission products nuclides include isotopes of cesium, neodymium, europium, samarium as well as 106Ru, 144Ce, 155Gd, 99Tc, 90Sr, 109Ag, and 103Rh. The sensitivity of some of the nuclides to the details of the power history and the adjustment of the fuel sample burnup is discussed. The impact of using ENDF/B-VII.0 library instead of ENDF/B-VI.8 is also discussed. Most of the nuclides analyzed are well predicted within ±7% of the experiment for actinides and fission products. STREAM depletion results are also compared to the codes SWAT, HELIOS and SCALE results based on publicly available information in literature, to check the performance of STREAM relative to other codes for the prediction of SNF isotopic inventory. The comparison to other code systems shows that the implementation in STREAM is of comparable accuracy. Overall, this paper demonstrates that the depletion capability in STREAM can be reliably applied to predict the isotopic inventory of PWR UO2 SNF for burnup ranging from 14 to 54 GWd/t and initial enrichment ranging from 3.0 to 4.1 wt% 235U.

Country
Korea (Republic of)
Keywords

660

17 references, page 1 of 2
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
16 citations, page 1 of 2
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%