Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Verification of DeCART2D/CAPP code system for VHTR analysis with PMR-200 benchmark

Authors: Eun Jeong; Jinsu Park; Hyun Chul Lee; Peng Zhang; Jiankai Yu; Matthieu Lemaire; Sooyoung Choi; +1 Authors

Verification of DeCART2D/CAPP code system for VHTR analysis with PMR-200 benchmark

Abstract

Abstract This paper presents the verification of the DeCART2D/CAPP code system for the Very High Temperature Gas-Cooled Reactor (VHTR) analysis with the Prismatic Modular Reactor 200 (PMR-200) benchmark. The McCARD Monte Carlo (MC) code is used to obtain the reference solution. The verification has been performed for the effective multiplication factor (keff) and reactivity coefficients at the levels of fuel compact, fuel block, and full core. Furthermore, the verification of the depletion calculation has been conducted for the fuel block and the verification for the power distribution has been performed at the levels of fuel block, two-dimensional (2D) and three-dimensional (3D) full core. The verification results of DeCART2D, CAPP, and DeCART2D/CAPP are compared systematically against the reference McCARD solutions to demonstrate the VHTR modeling capability and accuracy of the codes. It was successfully shown that the keff errors of the DeCART2D/CAPP code system are smaller than ∼510 pcm, the isothermal temperature coefficient (ITC) errors are smaller than ∼0.66 pcm/K, and the power distribution errors are smaller than 2.80%. It was also shown that the maximum keff errors of DeCART2D fuel block depletion calculations are smaller than ∼460 pcm.

Country
Korea (Republic of)
Keywords

621

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average