Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system

Authors: Jiankai Yu; Hyunsuk Lee; Matthieu Lemaire; Hanjoo Kim; Peng Zhang; Deokjung Lee;

Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system

Abstract

Abstract A fuel performance (FP) analysis of the BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulations) benchmark Cycle 1 depletion is performed using the MCS/FRAPCON coupled code system. MCS/FRAPCON is a cycle-wise Picard-iteration inner-coupling code system. It is based on the Monte Carlo neutron-transport code MCS and employs the steady-state fuel behavior prediction code FRAPCON as a thermal-hydraulic (T/H) and FP solver. MCS is developed by the Computational Reactor Physics and Experiment Lab of Ulsan National Institute of Science and Technology for the high-fidelity full-core analysis of large-scale commercial light water reactors. Results of power, fuel temperature, coolant temperature and coolant density distributions are presented and analyzed for a quarter-core pin-wise depletion simulation of the BEAVRS Cycle 1 benchmark with T/H and FP feedback (10 axial meshes per pin, 180,870 depletion cells in total). For code-code comparison purpose, the depletion simulation is also conducted with the MCS/TH1D (internal one-dimensional T/H solver) and MCS/CTF (external sub-channel 3D T/H solver) coupled code systems. The dependence to the burnup of the power, fuel temperature, coolant temperature, and coolant density distributions is analyzed by comparison between the three coupled systems. Validation is performed against BEAVRS measured data for the calculated boron letdown curve and calculated distributions of axially-integrated assembly-wise detector signal. Finally, unique distributions of parameters that can only be obtained by FP analysis are examined to illustrate the advanced analysis capability of MCS/FRAPCON.

Country
Korea (Republic of)
Keywords

600

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Top 10%