Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Nuclear En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Nuclear Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation of temperature and heat distribution across 220 MWe Indian PHWR channel under boil-off condition

Authors: Deb Mukhopadhyay; P. Majumdar; Ravi Kumar; Subodh Kumar Yadav;

Experimental investigation of temperature and heat distribution across 220 MWe Indian PHWR channel under boil-off condition

Abstract

Abstract Under very low probability postulated accident like LOCA with unavailability of ECCS, the moderator heat sink maintains the channel integrity by providing adequate cooling. As the cooling is external to channel, the circumferential as well axial temperature gradient exists within the channel internals. An experimental set-up was fabricated to simulate the boil-off condition during a postulated accident in NPP. The experiments were conducted at average fuel bundle temperature 600 °C, 800 °C and 1100 °C with superheated mixture of steam and argon. The minimum and maximum temperature in CT, PT and fuel bundle were diametrically opposite to each other; the circumferential as well axial temperature gradient increased with an increase in bundle temperature. The rate of moderator heat absorption increases with increase in bundle temperature. The moderator was successfully able to prevent a breach in the channel; it proved to be the ultimate heat sink during a postulated LOCA with unavailability of ECCS.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average