Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Catalysis B ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Catalysis B Environmental
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production

Authors: Marie-Françoise Reyniers; Guy B. Marin; Tanguy F. Dossin; Rob J. Berger;

Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production

Abstract

Abstract A heterogeneous magnesium oxide catalyst is a good alternative for homogeneous catalysts for the transesterification of alkyl esters for the production of fine-chemicals as well as for the production of biodiesel. The transesterification of ethyl acetate with methanol was used as a model reaction to simulate fine-chemical production in a batch slurry reactor at industrial conditions. The transesterification of triolein with methanol to methyl oleate was chosen to simulate continuous production of biodiesel from rapeseed oil. A kinetic model based on a three-step ‘Eley–Rideal’ type of mechanism in the liquid phase was used in both process simulations. The transesterification reaction occurs between methanol adsorbed on a magnesium oxide free basic site and ethyl acetate or the glyceride from the liquid phase. Methanol adsorption is assumed to be rate-determining in both processes. Activity coefficients were required to account for the significant non-ideality of the reaction mixture in the simulations of both processes. The simulations indicate that a production of 500 tonnes methyl acetate per year can be reached at ambient temperature in a batch reactor of 10 m 3 containing 5 kg of MgO catalyst, and that a continuous production of 100,000 tonnes of biodiesel per year can be achieved at 323 K in a continuous stirred reactor of 25 m 3 containing 5700 kg of MgO catalyst. Although various assumptions and simplifications were made in these explorative simulations the assumptions concerning the reaction kinetics used, the results indicate that for both processes a heterogeneous magnesium oxide catalyst shows promising potential as a viable industrial scale alternative.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    230
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
230
Top 1%
Top 1%
Top 10%