

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An opening route to the design of cathode materials for fuel cells based on PtCo nanoparticles

handle: 10261/335020
The performance of PtCo/C electrocatalysts in the oxygen reduction reaction is enhanced after thermal treatment in hydrogen. In fact, the intrinsic activity (per gram of Pt) of PtCo/C electrocatalyst after the adequate treatment is far superior to that of the commercial sample. The PtCo nanoparticles were prepared from the water-in-oil microemulsion technique. The total metal loading of the catalyst was 30 wt%, and two reduction temperatures, 300 and 875 °C, were studied. Electrochemical measurements were carried out using the rotating disk electrode method in 0.5 M H2SO4 at room temperature, while the Pt real surface area was determined by CO stripping voltammetry. Analyses from XPS and TPR revealed that the amount of Co and Pt reduced species as well as the particle size (XRD), increased with the thermal treatment. Results derived from the electrochemical analyses were in agreement with those obtained in a H2/O2 single cell. These results demonstrate the important role of the cobalt as well as the reduction temperature and atmosphere, and open new ways for the design of improved bimetallic catalyst. The HIVELIO program (ENE2004-07345-c03-01/A) of the Spanish Ministry of Science and Technology and the Comunidad de Madrid-CSIC project reference 200680M013 are acknowledged for financial support. S. Rojas also acknowledges to the “Programa Ramón y Cajal” of the Spanish Ministry of Science and Technology for financial support. P. Hernández-Fernández acknowledges to the Spanish Ministry of Education and Science for a grant.
PtCo, Fuel cell, Electrocatalysts, Thermal treatment
PtCo, Fuel cell, Electrocatalysts, Thermal treatment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 30 download downloads 47 - 30views47downloads
Data source Views Downloads DIGITAL.CSIC 30 47


