
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles

The influence the support has on the performance of Ni catalysts used in the reforming of biomass fast pyrolysis volatiles has been assessed. Accordingly, five catalysts have been prepared by wet impregnation method, namely Ni/Al2O3, Ni/SiO2, Ni/MgO, Ni/TiO2 and Ni/ZrO2. These catalysts have been characterized by nitrogen adsorption/desorption, X-ray fluorescence spectroscopy, temperature programmed reduction and X-ray diffraction techniques. The pyrolysis-reforming runs have been performed in a bench scale unit operating in continuous regime. The biomass (pine wood sawdust) pyrolysis step has been carried out in a conical spouted bed reactor at 500 ºC, with the volatiles produced (a mixture of gases and bio-oil) being reformed in-line on the prepared catalysts in a fluidized bed reactor at 600 ºC. Remarkable differences have been observed amongst the catalyst prepared, with Ni/Al2O3, Ni/MgO and Ni/ZrO2 being those leading to the most encouraging results, whereas Ni/TiO2 and, especially Ni/SiO2, showed a limited reforming activity. The performance of each catalyst has been related to its properties determined in the characterization. This work was carried out with financial support from the Ministry of Economy and Competitiveness of the Spanish Government (CTQ2016-75535-R (AEI/FEDER, UE) and CTQ2015-69436-R (MINECO/FEDER, UE)) and the Basque Government (IT748-13).
reforming, biomass, hydrogen, conical spouted bed, pyrolysis, catalyst
reforming, biomass, hydrogen, conical spouted bed, pyrolysis, catalyst
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).95 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
