Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Catalysis B ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Catalysis B Environmental
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil

Authors: Tomás Cordero-Lanzac; Roberto Palos; Idoia Hita; José M. Arandes; José Rodríguez-Mirasol; Tomás Cordero; Javier Bilbao; +1 Authors

Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil

Abstract

Virtually all processes aiming for fuels and chemicals from biomass entail no less than one step for removing oxygen by hydrodeoxygenation (HDO). The bottleneck of HDO is the formation of deactivating carbonaceous species on the catalyst surface. In this work, we have studied the deactivation pathways of catalysts based on noble metal nanoparticles (Pt-Pd) supported on mildly acid supports during the HDO of raw bio-oil. At conditions of accelerated deactivation, monitoring the evolution with time on stream of hydrocarbon and oxygenated compounds in the reaction medium, the intermediates on the catalyst surface and the nature-location of deactivating species, two parallel deactivation routes have been revealed: the deposition of (i) thermal or pyrolytic lignin from alkylmethoxy phenols, on the catalyst mesopores and favored at low temperature, and; of (ii) aromatic coke from polycyclic aromatic hydrocarbons, starting on the catalyst micropores through condensation reactions and promoted by acidic sites and high temperature. Nevertheless, catalyst deactivation can be controlled within limits at harsh temperature conditions (450 degrees C) due to the preferential HDO of alkyl(methoxy) phenols into aromatics and the formation-hydrocracking steady state of the aromatic precursors of coke.

Keywords

Hydrodeoxygenation (HDO), FCC UNIT, Catalyst deactivation, Bio-oil, Coke formation, FAST PYROLYSIS, ORBITRAP MASS-SPECTROMETRY, SUPPORT, Mechanisms, NOBLE-METAL CATALYSTS, ZEOLITE, DIFFERENT BIOMASS SOURCES, ACTIVATED CARBON, GUAIACOL, BIFUNCTIONAL CATALYST, Metal supported catalyst

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 1%
bronze