Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation

Authors: Xianguo Li; Prodip K. Das; Prodip K. Das; Zhong-Sheng Liu;

Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation

Abstract

Abstract The Bruggeman approximation has widely been used for estimating the effective conductivity and diffusivity of both the catalyst and gas diffusion layers of polymer electrolyte membrane (PEM) fuel cells. This approximation is based on the Bruggeman’s Effective Medium Theory [Bruggeman D. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. Ann Phys (Leipzig) 1935;24:636–79], which provides empirical correlation for the effective properties of a composite system. Since it is an empirical correlation, a unique correlation based on the Bruggeman approximation does not always hold for the PEM fuel cell effective properties. Rather, the Bruggeman correlation is a cell specific and experiment dependent correlation that depends on structure, phase composition, water saturation, experimental parameters, etc. Further, this correlation needs to be combined with other correlations to estimate the effective diffusivities. In this article, a set of mathematical formulations has been proposed for the effective transport properties in both the catalyst and gas diffusion layers of a PEM fuel cell. The effective conductivity and diffusivity expressions are derived from the mathematical formulations of the Hashin Coated Sphere model [Hashin Z. The elastic moduli of heterogeneous materials. J Appl Mech 1962;29:143–50], which provides an identical mathematical foundation for each of these effective properties rather than an empirical correlation and avoid to use of multiple correlations together. The present model formulations agree well with the results available in literature for the limiting case. Hence, the proposed formulations for the effective transport properties will be a useful estimating tool in the numerical modeling of PEM fuel cells.

Country
United Kingdom
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 1%
Top 10%
Top 10%