Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion of syngas in a pressurized microturbine-like combustor: Experimental results

Authors: Frank Delattin; Svend Bram; Svend Bram; Jacques De Ruyck; Sergio Rizzo; Giovanni Di Lorenzo;

Combustion of syngas in a pressurized microturbine-like combustor: Experimental results

Abstract

The different routes for power production from biomass often lead to an intermediary product such as a synthesis gas or syngas, which is typically rich in hydrogen and carbon monoxide. The simple design, fuel flexibility and size, which often matches the amount of waste energy available in industrial sites, makes microturbines an attractive solution for on-site, decentralized power generation using a limited range of alternative fuels such as synthetic gas. The properties of the synthetic fuel differ from properties of natural gas and a detailed experimental study with a separated microturbine-like pressurized combustor is therefore necessary. The present article reviews the experimental results obtained by gradually switching the fuel feed from natural gas to wet syngas in a pressurized, slightly modified lean premix microturbine combustor. Temperature profiles, pressure, emissions and flame imaging were closely monitored to detect possible problems in operability of the combustor caused by the strong difference in fuel characteristics. No problems regarding auto-ignition, dynamic or static instability were observed throughout the test-run. Temperature profiles stayed well within allowable limits and did not reveal any significant shift in flame anchoring position. The combustion of syngas during full or part load of the combustor produced remarkably low NOx and CO emissions. The microturbine combustor achieved stable full load combustion of syngas at the end of the test-run.

Country
Belgium
Keywords

microturbine, biomass, Combustion, syngas, lean premix, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%