Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A neural network based approach for wind resource and wind generators production assessment

Authors: Lamine Thiaw; G. Sow; E. Sylla; Salif Fall; M. Kasse; S. Thioye;

A neural network based approach for wind resource and wind generators production assessment

Abstract

Abstract The statistical study of wind speed measurements on a site makes it possible to determine a distribution law, needed to assess the available or recoverable wind energy potential. The classical approach consists in assimilating the distribution law to standard models, for example Weibull or Rayleigh, and in determining the parameters of the model so that it gets closest to the discrete law obtained by statistically treating the wind speed measurements. The Weibull model is the most used one and provides good results. However, the accurate determination of the wind speed distribution law constitutes a major problem. Multi Layer Perceptron type artificial neural networks, highly effective in function approximation problems, are used here for the approximation of the wind speed distribution law. The site energy characteristics have been determined by means of the neural approach and compared with those obtained by the classical method. The results show that the distribution law achieved by the neural model provides assessments closer to the discrete distribution than the Weibull model. This approach has enabled the wind energy potential on the Dakar site to be determined in a more accurate way. The models are also used to assess the amount of energy the wind generator WES18 of 80 kW power, set up at 10 m and 40 m above the ground, would produce annually.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%