Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system

Authors: Masud Behnia; Mehdi Aghaei Meybodi;

Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system

Abstract

Abstract Combined heat and power (CHP) systems due to their high efficiency compared to the conventional power generation systems have received considerable attention as they have less harmful impact on the environment. Recently, the serious concern with reducing the greenhouse gas emissions has focussed the attention on the possibility of a carbon tax in some countries. Here, we address the impact of such tax on the sizing and economics of a CHP system. Optimum sizing of CHP systems is of great importance to maximize the benefits of these systems. To select the optimum prime mover of a CHP system, performance characteristics of engine as well as economic parameters should be taken into consideration. A general thermo-economic approach to optimum sizing of internal combustion engines as the prime movers (any type and size) of a medium scale CHP system (500–5000 kW) and planning their operational strategy is developed. Net Annual Cost (NAC) as the criterion for making decision is introduced and appropriate equations for estimating thermodynamic and economic parameters as well as greenhouse gas emissions are presented. We consider three modes of operation: one-way connection (OWC) mode, two-way connection (TWC) mode, and heat demand following (HDF) mode. The proposed method has been used for a case study where data is available in the literature and the optimum nominal powers using gas engines are 3.3 MW, 3.2 MW, and 1.2 MW and in the case of using diesel engines are 3.4 MW, 3.4 MW, and 1.4 MW for TWC, OWC, and HDF modes, respectively. To determine the sensitivity of results to input parameters (e.g. electricity price) a comprehensive parametric study was conducted.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%