Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microalgal cell disruption for biofuel development

Authors: Paul A. Webley; Ronald Halim; Razif Harun; Razif Harun; Michael K. Danquah;

Microalgal cell disruption for biofuel development

Abstract

Abstract The production of alternative fuels from microalgae involves lengthy processing steps. Cell disruption is an integral part of the downstream pool of unit operations as it facilitates the release of intracellular products essential for biofuel production. This study investigated the use of high-pressure homogenization, ultrasonication, bead beating, and sulfuric acid treatment as laboratory-scale disruption methods for microalgal cells. The performance of each cell disruption method was evaluated in terms of two key indicators: reduction in the intact cell count and reduction in the average colony diameter. The microalgal strain, Chlorococcum sp., was used throughout the study. The most effective disruption was obtained using high-pressure homogenization (average disruption = 73.8% of initial intact cells) followed by sulfuric acid treatment (average disruption = 33.2% of initial intact cells) and bead beating (average disruption = 17.5% of initial intact cells). Even though ultrasonication failed to disrupt the microalgal cells under the investigated conditions (average disruption = 4.5% of initial intact cells), it still managed to disintegrate cellular colonies.

Country
Australia
Keywords

570, 572, 610

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    290
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
290
Top 1%
Top 1%
Top 1%