Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems

Authors: Martin Belusko; N.H.S. Tay; Frank Bruno;

An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems

Abstract

Thermal storage systems with phase change materials are predominantly designed, analysed and optimised through numerical modelling. An alternative simplified method is being proposed for the characterisation of these phase change thermal storage systems. The method is based on the effectiveness-number of transfer units (e-NTUs) technique. A simplified mathematical representation has been analytically developed using the e-NTU technique for a cylindrical tank filled with phase change material (PCM), with heat transfer fluid flowing through tubes inside the tank. Experiments have been carried out on a cylindrical tank filled with PCM and with one, two and four coils of tubes to validate the technique. Experimental results for the systems with a high heat transfer area compare well with those calculated from the model. The results show that this technique can readily be used as a design tool for sizing and optimising a thermal storage unit with phase change materials. From this study, it may be concluded that the model based on the e-NTU technique can accurately predict the average heat exchange effectiveness of the thermal storage system with a high heat transfer surface area during charging and discharging.

Country
Australia
Keywords

thermal storage system, effectiveness-NTU, phase change material

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 1%
Top 1%
Top 1%