
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems

handle: 1959.8/119626
An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems
Thermal storage systems with phase change materials are predominantly designed, analysed and optimised through numerical modelling. An alternative simplified method is being proposed for the characterisation of these phase change thermal storage systems. The method is based on the effectiveness-number of transfer units (e-NTUs) technique. A simplified mathematical representation has been analytically developed using the e-NTU technique for a cylindrical tank filled with phase change material (PCM), with heat transfer fluid flowing through tubes inside the tank. Experiments have been carried out on a cylindrical tank filled with PCM and with one, two and four coils of tubes to validate the technique. Experimental results for the systems with a high heat transfer area compare well with those calculated from the model. The results show that this technique can readily be used as a design tool for sizing and optimising a thermal storage unit with phase change materials. From this study, it may be concluded that the model based on the e-NTU technique can accurately predict the average heat exchange effectiveness of the thermal storage system with a high heat transfer surface area during charging and discharging.
- University of South Australia Australia
- University of South Australia Australia
thermal storage system, effectiveness-NTU, phase change material
thermal storage system, effectiveness-NTU, phase change material
3 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).174 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
