Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
IRDB
Article . 2012
Data sources: IRDB
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system

Authors: Willy Yanto Wijaya; Shunsuke Kawasaki; Hirotatsu Watanabe; Ken Okazaki;

Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system

Abstract

Studies on the kinetics of methanol steam reforming (MSR) reaction have been extensively carried out in these past decades. However, in order to get a more thorough understanding of the MSR performance, it is necessary to integrate the reaction kinetics of MSR with the reactor design/operating parameters. This paper presents such works and employs Damkohler number (Da) to conveniently describe the trade-off between kinetics (reaction time scale) and operating parameters (residence time scale) of the MSR system. The correlation of Da and methanol conversion was also experimentally verified. Furthermore, feasibility criterion as a parameter to describe energy gain obtained by MSR reaction over the energy required by absorption heat pump (AHP) system was viewed, and its correlation with Da was investigated. Some results showed that even at various combinations of GHSV and MSR reaction temperature, the Da – methanol conversion empirically have a similar typical curve. On the other hand, for the combined AHP–MSR system, changing the value of Da, either by changing the GHSV or MSR reaction temperature, results in different profiles of feasibility criterion and hydrogen production rate.

Country
Japan
Related Organizations
Keywords

620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%