
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A dynamic model based on the piston flow concept for the thermal characterization of solar collectors

handle: 10459.1/58596
Abstract A simple, transient model for the characterization of the dynamic thermal performance of solar thermal collectors was developed and experimentally validated. The proposed model equation is linear with respect to the input parameters and does not require any treatment for ordinary differential equations (ODEs). The temperature distribution in the fluid flowing inside the collector is described by means of the piston flow and finite increment concepts. The dynamic effect, for a given flow rate, is expressed by the heat transport time and is based on the effective thermal capacity of the collector. The results reveal that the characteristic parameters involved in the model agree reasonably well with the experimental variables obtained from standard steady-state measurements. After a calibration process the model can well predict the thermal performance of a solar thermal collector, for a specific weather data set.
- University of Lleida Spain
- University of Lleida Spain
- Lampung University Indonesia
- Lampung University Indonesia
Transient model, Solar thermal collector, Piston flow concept, Thermal characterization
Transient model, Solar thermal collector, Piston flow concept, Thermal characterization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
