Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas

Authors: Adrian Ilinca; Jean Perron; Tammam Basbous; Tammam Basbous; Rafic Younes; Rafic Younes;

A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas

Abstract

This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

Country
Canada
Keywords

Génie des matériaux et génie métallurgique, parametric optimization, wind-diesel system, compressed air energy storage, valves actuation, diesel engine, pneumatic hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%