
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells

Abstract Microbial fuel cells (MFCs) hold great promise as an alternative for direct biochemical energy extraction from both biomass and wastewater. However, the commercialization and scaling-up of MFCs is not completely feasible, due to the high price of platinum (Pt) as a cathode catalyst. In this paper, we studied the use of a carbon nanotube (CNT) composite catalyst, to reduce the amount of Pt (without decline of efficiency) for moving towards the commercialization of MFCs. CNT/Pt composite electrodes would increase MFC power output by 8.7–32.2%; with respect to the pristine Pt as a catalyst for the cathode at a chemical oxygen demand (COD) substrate of 100 mg/l and 2000 mg/l, respectively. Moreover, the amount of Pt in the CNT/Pt electrode could be reduced by up to 25% of the amount necessary for a conventional Pt/carbon electrode.
- Fuel Cell Institute Malaysia
- Universiti Malaysia Terengganu Malaysia
- King Saud University Saudi Arabia
- Kangwon National University Korea (Republic of)
- K.N.Toosi University of Technology Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).140 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
