Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

Authors: Ortiz-Vitoriano, N.; Bernuy-Lopez, C.; Ruiz de Larramendi, I.; Knibbe, R.; Thyden, K.; Hauch, A.; Holtappels, P.; +1 Authors

Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

Abstract

Abstract For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive – requiring both low-priced raw material and cost-effective production techniques. In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination (∼600 °C) and electrode sintering (∼800 °C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10 Ω cm2 at 800 °C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range of temperatures (800–1000 °C). Scanning Electron Microscopy (SEM) studies revealed porous electrode microstructures, even when sintered at a temperature of just 800 °C. The competitive performance of the electrodes sintered at low temperatures, combined with the low raw material cost, make these electrodes an excellent potential choice for SOFC cathodes. In this work a new cathode processing technique is presented which provides a more economical, lower temperature SOFC production route with no detrimental effect on device efficiency.

Country
Australia
Keywords

2100 Energy, Monitoring, Policy and Law, 2210 Mechanical Engineering, Perovskite, 2215 Building and Construction, Solid oxide fuel cell, 2308 Management, Cathode, Electrochemical impedance spectroscopy, Microstructure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%