Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ktisis
Article . 2017
Data sources: Ktisis
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants

Authors: Soteris A. Kalogirou; D. De Pieri; A. Massi Pavan; Adel Mellit; Adel Mellit;

A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants

Abstract

This paper presents a comparison between two different techniques for the determination of the effect of soiling on large scale photovoltaic plants. Four Bayesian Neural Network (BNN) models have been developed in order to calculate the performance at Standard Test Conditions (STC) of two plants installed in Southern Italy before and after a complete clean-up of their modules. The differences between the STC power before and after the clean-up represent the losses due to the soiling effect. The results obtained with the BNN models are compared with the ones calculated with a well known regression model. Although the soiling effect can have a significant impact on the PV system performance and specific models developed are applicable only to the specific location in which the testing was conducted, this study is of great importance because it suggests a procedure to be used in order to give the necessary confidence to operation and maintenance personnel in applying the right schedule of clean-ups by making the right compromise between washing cost and losses in energy production.

Keywords

Soiling, Computer and Information Sciences, Maintenance, Pollution, polynomila regression, Large scale pv plant, maintenance, Large scale photovoltaic plant, soiling, pollution, Large scale pv plant; soiling; pollution; maintenance; Bayesian NN; polynomila regression, Bayesian NN, Natural Sciences, Polynomial regression

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 1%
Top 10%
Top 10%