Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season

Authors: Fabrizio Ascione; Filippo de Rossi; Giuseppe Peter Vanoli; Rosa Francesca De Masi; Nicola Bianco;

Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season

Abstract

Abstract With reference to building applications, recent scientific literature shows good potential in reducing cooling loads by means of phase change materials (PCMs), integrated in the building exterior envelope. This paper proposes a deepening, by investigating if these dynamic components could contribute in reducing building cooling demand in Mediterranean climates. An office building is analyzed, with reference to the entire cooling season (from May 1st to September 30th), in reliable conditions as regards building use, and thus internal gains, occupancy, activation of cooling systems. More in detail, through hourly energy simulation, the achievable cooling energy savings have been calculated, with reference to a well-insulated massive building, refurbished by means of addition of PCM plaster on the inner side of the exterior envelope. Five Mediterranean climates have been taken into account: Ankara (Turkey), Athens (Greece), Naples (Italy), Marseille (France), Seville (Spain). The studies regarded the influences of the phase change temperature, thickness of the PCM wallboard and location of the PCM layer. Beyond the evaluation of the absolute savings of primary energy requests for cooling, the energy saving rate and the not-overheating time have been calculated, respectively by considering an air conditioned building and a naturally ventilated building with free-running indoor temperatures. Starting from the achieved results, through the values of the proposed indicators, this paper would suggest information useful for proper design and selection of phase change materials for building applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    260
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
260
Top 1%
Top 1%
Top 1%
bronze