
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas

Experimental results are presented on silica deposition in a typical domestic heat exchanger during combustion of siloxane-containing gas as a model of biogas that is produced naturally during the anaerobic degradation of organic material in landfills and waste water treatment plants. A model of silica deposition is developed. The main objective is to demonstrate that the mass flux of silica to heat exchanger surfaces is not sensitive to details of particle coagulation process and particle size distribution. It is shown that the deposition flux of silica depends linearly on siloxane concentration in input air/gas mixture.
- Kharkiv Institute of Physics and Technology Ukraine
- University of Groningen Netherlands
- KEMA Netherlands
- Kharkiv Institute of Physics and Technology Ukraine
Siloxane, Thermophoretic transport, Biogas, Deposition, Silica nanoparticles
Siloxane, Thermophoretic transport, Biogas, Deposition, Silica nanoparticles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
