Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization

Authors: Günter Scheffknecht; Melanie Hilber; Barna Heidel;

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization

Abstract

Abstract The wet flue gas desulfurization process (FGD) in fossil fired power plants offers the advantage of simultaneously removing SO2 and other water soluble pollutants, such as certain oxidized mercury compounds (Hg2+). In order to maximize SO2 removal efficiency of installed FGD units, organic additives can be utilized. In the context of multi-pollutant control by wet FGD, the effect of formic and adipic acid on redox reactions of dissolved mercury compounds is investigated with a continuously operated lab-scale test-rig. For sulfite ( SO 3 2 - ) concentrations above a certain critical value, their potential as reducing agent leads to rapidly increasing formation and re-emission of elemental mercury (Hg0). Increasing chloride concentration and decreasing pH and slurry temperature have been identified as key factors for depressing Hg0 re-emissions. Both organic additives have a negative impact on Hg-retention and cause increased Hg0 re-emissions in the wet FGD process, with formic acid being the significantly stronger reducing agent. Different pathways of Hg2+ reduction were identified by qualitative interpretation of the pH-dependence and by comparison of activation enthalpies and activation entropies. While the first mechanism proposed identifies SO 3 2 - as reducing agent and is therefore relevant for any FGD process, the second mechanism involves the formate anion, thus being exclusively relevant for FGDs utilizing formic acid as additive.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
bronze