
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Technology scale and supply chains in a secure, affordable and low carbon energy transition

AbstractThis research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable.
- University of Exeter United Kingdom
Resilience, Energy security, PV, Technology scale, Energy(all), Nuclear power, Supply chains, Civil and Structural Engineering
Resilience, Energy security, PV, Technology scale, Energy(all), Nuclear power, Supply chains, Civil and Structural Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
