
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental and numerical analysis of supersonic air ejector

highlights � The performance and flow field inside ejectors are studied numerically and experimentally. � The pressures before the second shock position remain constant during the critical mode. � NXP has an optimal value for entrainment ratio, but no effect on the critical discharged pressure. abstract The present paper performs experimental and numerical investigations on the global performance and internal flow of a supersonic air ejector. The effects of operation parameters and geometrical factor on the air ejector performance have been analyzed. The results show that: the static wall pressure and axisymmetric line static pressure remain constant in critical mode under different discharged pressures, but they both increase in sub-critical mode with the increase of the discharged pressure. The shock position of the mixed fluid moves upstream in critical mode. The second shock position disappears in sub-critical mode. The experimental and numerical results indicate that there exists an optimal nozzle exit position (NXP) corresponding to maximum entrainment ratio, but the critical value of discharged pressure is almost independent of NXP.
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
