

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator

This paper deals with how demand response can contribute to the better integration of renewable energy resources such as wind power, solar, small hydro, biomass and CHP. In particular, an economic evaluation performed by means of the micro-power optimization model HOMER Energy has been done, considering a micro-grid supplied by a biomass gasification power plant, operating isolated to the grid and in comparison with other generation technologies. Different scenarios have been simulated considering variations in the power production of the gasified biomass generator and different solutions to guarantee the balance generation/consumption are analyzed, demonstrating as using demand response resources is much more profitable than producing this energy by other conventional technologies by using fossil fuels.
- State University of New York at Potsdam United States
- University of Chicago United States
- State University of New York at Potsdam United States
- Universitat Politècnica de València Spain
Demand response, Hybrid system, Renewable resources, Stand-alone system, INGENIERIA ELECTRICA, Biomass, Microgrids
Demand response, Hybrid system, Renewable resources, Stand-alone system, INGENIERIA ELECTRICA, Biomass, Microgrids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).133 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 48 download downloads 229 - 48views229downloads
Data source Views Downloads RiuNet 48 229


