
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis

Abstract The biological conversion of H2 and CO2 into CH4, using methanogenic archaea is an interesting technology for CO2 conversion, energy storage and biogas upgrading. For an industrial application of this process however, the optimization of the volumetric productivity and the product quality is an important issue. Since the reactants in this fermentation process are, unlike in most microbial fermentations, solely gasses, the gas liquid mass transfer is supposed to play an important role on the way to a higher volumetric productivity. This work aimed at investigating the effects of the gassing rate, the reactor pressure, as well as reactor design issues on the performance of Methanothermobacter marburgensis by using continuous cultures. Our results show that biological methanogenesis with M. marburgensis is gas limited. Maximum physiological capacity is not reached yet. The gassing rate influenced mainly the volumetric methane production rate (MER), the reactor pressure influenced mainly the offgas quality. Based on this information, we demonstrated how a combination of increased gas flow rate and increased reactor pressure can be used to reach high volumetric productivity at high offgas quality. Maximum MER was 950 mmol L−1 h−1 at a CH4 concentration of 60 Vol.-%, maximum CH4 concentration reached was 85 Vol.-% at a MER of 255 mmol L−1 h−1. The reactor design currently limits further increase in gas flow rate and reactor pressure. Therefore Interdisciplinary bridges from bioprocessing to chemical reactor design must be followed in the future to boot this promising bioprocess to gain biomethane via CO2 fixation.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).109 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
