Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation on the thermoacoustic conversion characteristic of regenerator

Authors: Zhanghua Wu; Ercang Luo; Chen Yanyan; Li Donghui; Wei Dai;

Investigation on the thermoacoustic conversion characteristic of regenerator

Abstract

Abstract Regenerator is the core component in the regenerative heat engines, such as thermoacoustic heat engine, and Stirling heat engine. The regenerator has a porous configuration, in which the thermoacoustic effect happens between the working gas and solid wall converting heat into acoustic work. In this paper, a novel experimental setup was developed to investigate the thermoacoustic conversion characteristic of the regenerator. In this system, two linear motors acted as compressors to provide acoustic work for the regenerator and the other two linear motors served as alternators to consume the acoustic work out of the regenerator. By changing the impedance of the alternators, the phase difference between the volume velocities at the two ends of the regenerator could be varied within a large range. In the experiments, the influence of phase difference, heating temperature and different materials on the performance of the regenerator were studied in detail. According to the experimental results, the output acoustic power increased when the phase difference between velocities of the compression and expansion pistons increased within this phase angle range. And the thermoacoustic efficiency had different optimum values with different heating temperatures. Additionally, it also shows that flow resistance and heat transfer area were very important to the performance. In the experiments, a maximum output acoustic power of 715 W and a highest thermoacoustic efficiency of 35.6% were obtained with stack and random fiber type regenerators respectively under 4 MPa pressurized helium and 650 °C heating temperature. This work provides an efficient way to investigate the thermoacoustic conversion characteristic of the regenerator. It also provides some clues to the regenerator design.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%