Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study

Authors: Delavari, Saeed; Saidina Amin, Nor Aishah;

Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study

Abstract

Abstract The study on immobilized titania (TiO2) nanoparticles semiconductor on stainless steel mesh for photocatalytic conversion of CO2 and CH4 has been investigated. Properties of commercial and calcinated photocatalysts on mesh surface were characterized using UV–vis spectra, BET, FESEM and XRD. The photoreduction products were identified with FTIR and GC. The process conditions was optimized using experimental design and process optimization tools to determine the maximum desired response via Response Surface Methodology (RSM) in conjunction with central composite rotatable design (CCRD). The experimental parameters were stainless steel mesh size, amount of titania nanoparticles, calcination temperature, UV light power and initial ratios of CO2:CH4:N2 in feed. Calcination of coated titania nanoparticles increased the absorption of UV–vis light while uniform photocatalyst structure commensurate with decreasing agglomeration. The optimal conditions for maximum CO2 conversion of 37.9% were determined as stainless steel mesh size of 140, coated titania nanoparticles on mesh of 4 g, calcination temperature of 600 °C, UV light power of 250 W and 10% of CO2 in feed. Correspondingly, the selectivity of products were 4.7%, 4.3%, 3.9%, 41.4% and 45.7% for ethane, acetic acid, formic acid, methyl acetate and methyl formate, respectively. The kinetic model, based on Langmuir–Hinshelwood, incorporated photocatalytic adsorptive reduction and oxidation reactions over the catalyst surface, and fitted-well with the experimental data.

Country
Malaysia
Related Organizations
Keywords

660, TP Chemical technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research