Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs

Authors: Mario Hernández-Tejera; I. Lopez-Rodriguez;

Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs

Abstract

The most successful peer-to-peer networks are based on the concept of supernode, which is an operating point of the network that provides services and advanced functionalities to other nodes. Inspired by this idea, this paper proposes to integrate nodes that provide intelligent advanced services in the future architecture of the electrical grid. Besides facilitating the access to data services such as demand estimations and weather forecasts, these nodes are especially meant to hold virtual environments in which software agents, after being contracted, negotiate on behalf of users in energy markets. This architecture is designed to be compatible with the Energy Interoperation OASIS standard. The capabilities and feasibility of the proposal is demonstrated through realistic experiments based on OpenADR programs, in which users exchange energy by using parallel auction markets. In addition, in order to have the roles of buyer and seller in demand-response programs, thus allowing the creation of markets, a conceptual model based on negative loads and critical loads is provided. The experiments have proven that the proposed architecture facilitates the implementation of advanced distributed management systems in order that smart metering infrastructures, in contrast with traditional agent-based solutions, are released to perform negotiation tasks and access data services, while users gain both autonomy and decision-making capacity. 11 1 2,912 5,746 Q1 Q1 SCIE

Keywords

3322 Tecnología energética, Energy services, Multi-agent systems, Modeling and simulation, 120304 Inteligencia artificial, Smart Grid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%