
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling and optimization of CHP based district heating system with renewable energy production and energy storage

Abstract Renewable energy source (RES) is playing an increasingly important role to reduce fossil fuels in district heating (DH) and to alleviate the accompanying environmental impact. In this paper, a combined heat and power (CHP) based DH system with RES and energy storage system (ESS) is studied. A modelling and optimization method is developed for planning and operating such CHP-DH systems. The objective of the optimization is to minimize the overall costs of the net acquisition for heat and power in deregulated power market. A planning model consisting of energy balances and constraints for system control and operation is built and an efficient algorithm is developed. We demonstrate the method in a CHP-DH system with a solar thermal plant and a thermal energy storage (TES). Results indicate that the developed method is efficient and flexible for planning and operating CHP-DH systems. To simulate the future situation, we also optimize the same CHP-DH system with a higher share of RES and a bigger TES. Results show that TES is used more intensively in the future with more fluctuating CHP load and a higher share of RES.
- Aalto University Finland
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
ta212, ta222, ta214, energy storage, renewable energy source (RES), district heating (DH), combined heat and power (CHP), optimization, ta218, energy efficiency
ta212, ta222, ta214, energy storage, renewable energy source (RES), district heating (DH), combined heat and power (CHP), optimization, ta218, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).325 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
