Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a 5 kW traveling-wave thermoacoustic electric generator

Authors: Tianjiao Bi; Zhanghua Wu; Limin Zhang; Guoyao Yu; Ercang Luo; Wei Dai;

Development of a 5 kW traveling-wave thermoacoustic electric generator

Abstract

Abstract Traveling-wave thermoacoustic heat engine is a new type of external combustion heat engine, which is capable of converting thermal energy to acoustic power with advantage of heat source flexibility, reliability and efficiency. The generated acoustic power will be further converted into electricity by connecting linear alternator with the engine. This power generation system is called traveling-wave thermoacoustic electric generator. In this paper, a new traveling-wave thermoacoustic electric generator is proposed, which consists of a multi-stage traveling-wave thermoacoustic heat engine and linear alternators. The engine has several units connected end-to-end by slim resonance tubes to obtain a traveling-wave acoustic field in the regenerator, which is required by an efficient thermoacoustic heat engine. The alternator is connected as a bypass at the end of each resonance tube. Here, a three-stage traveling-wave thermoacoustic electric generator was developed. In the experiments, the maximum electric power of 4.69 kW with thermal-to-electric efficiency of 15.6% and the maximum thermal-to-electric efficiency of 18.4% with electric power of 3.46 kW were achieved with 6 MPa pressurized helium, 650 °C and 25 °C heating and cooling temperatures. Additionally, the influence of the electric capacitance on the system performance was investigated, which may provide some clue to couple the alternator with the engine. So far, this performance is the best one of such type of machines. It is believed that this technology will be suitable for many applications in the energy area, such as solar energy, industrial waste heat and so on.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 1%
Top 10%
Top 1%