
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India

Abstract Renewable energy has a critical role in limiting the greenhouse gas (GHG) emissions. This paper assesses the implication of aligning renewable energy deployment target with national emission reduction target for mitigation cost. The assessment methodology uses Asia-Pacific Integrated Assessment/computable general equilibrium (AIM/CGE) model to determine the mitigation cost in terms of GDP and welfare loss under alternative renewable targets in different climate-constrained scenarios. A range of country-specific emission constraints is taken to address the uncertainties related to global emission pathway and emission entitlement scheme. Comparative results show that China needs to increase its share of non-fossil fuel significantly in the primary energy mix to achieve the stringent emission reduction target compared to India. The mitigation cost in terms of economic and welfare loss can be reduced by increasing the penetration of the renewable energy to achieve the same emission reduction target. The modeling results show that coordinated national climate and renewable energy policies help to achieve the GHG emission reduction target in an efficient and cost-effective manner.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
