Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic comparison between CSP plants presenting two different heat transfer fluids

Authors: Sau, S; Corsaro, N; Crescenzi, T; Liberatore, R; Russo, V; Tarquini, P; Tizzoni, A.; +2 Authors

Techno-economic comparison between CSP plants presenting two different heat transfer fluids

Abstract

Abstract The employment of parabolic trough solar power plants (PT-CSP) for electrical power and process heat generation is one of the most promising technologies for carbon free energy production. The selection of thermal fluids, both for the heat transfer (heat transfer fluid, HTF) and the storage (heat storage material, HSM), is a crucial point for increasing CSP efficiency and cost effectiveness. In this paper two different PT-CSP configurations, both presenting a double tanks storage system, are compared. In particular, two different medium size (50 MWe) plant schemes, presenting two different working fluids as HTF, are described and analysed. In the first scheme a “binary” molten salt mixture, composed of sodium and potassium nitrate, is considered, while, in the second one, the employment, as HTF, of a “ternary” mixture, consisting of sodium potassium and lithium nitrates, is investigated. In both cases, the binary mixture is used for thermal storage (HSM). The first scheme represents the configuration developed by ENEA and already used for the Archimede plant in Priolo Gargallo (Sicily-Italy). The second one is an innovative proposal, which aims to improve CSP plants performances and to reduce operating costs. In particular, since the ternary mixture has a considerably lower freezing temperature than the binary one, this solution allows to keep the system at a lower temperature overnight, so reducing thermal energy losses. In first instance, it is necessary to characterize the binary and ternary mixtures respect to their thermo-physical features. The two CSP configurations are then sized and, by a techno/economic evaluation, compared with respect to the calculated unit cost of electricity production.

Country
Italy
Keywords

PARABOLIC THROUGH, HEAT TRANSFER FLUIDS, 532, CSP, LOW MELTING THERMAL FLUIDS, TECHNO-ECONOMIC ANALYSIS, Settore CHIM/07 - FONDAMENTI CHIMICI DELLE TECNOLOGIE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%