Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy efficiency of platinum-free alkaline direct formate fuel cells

Authors: Wang, L. Q.; BELLINI, MARCO; FILIPPI, JONATHAN; Folliero, M.; LAVACCHI, ALESSANDRO; INNOCENTI, MASSIMO; MARCHIONNI, ANDREA; +2 Authors

Energy efficiency of platinum-free alkaline direct formate fuel cells

Abstract

We report the energy performance of a new platinum-free alkaline direct formate fuel cell, equipped with a commercial anion exchange membrane, a nanostructured Pd/C anode and a Fe-Co/C cathode. The cell was investigated both at room temperature and at 60 degrees C for the determination of the following parameters: (i) maximum power density, (ii) delivered energy, (iii) faradic (fuel conversion) and energy efficiency. These parameters show a dramatic dependence on fuel composition. The highest energy efficiency is obtained using high energy density fuel (4 M KCOOH and 4 M KOH) and with a maximum operating temperature of 60 degrees C. This represents a key step in the progress of alkaline platinum-free DFFC technology, demonstrating their potential as power sources for portable electronic devices and remote power generation systems. For example, a fuel load of 750 ml in a DFFC device operating at 60 degrees C would be able to produce 90 W h of energy, that required to fully charge the battery of a laptop computer. (C) 2016 Elsevier Ltd. All rights reserved.

Countries
Germany, Italy
Keywords

Monitoring, Policy and Law, Platinum-free, Mechanical Engineering, Electrochemical energy conversion, 600, Building and Construction, Catalysis, Management, Direct formate fuel cells, Energy (all), Energy efficiency, Portable power source, Direct formate fuel cells; Electrochemical energy conversion; Energy efficiency; Platinum-free; Portable power sources; Civil and Structural Engineering; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law, Portable power sources, Direct formate fuel cell, Civil and Structural Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%