
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings

Abstract We present a mathematical model to diagnose HVAC systems in buildings based upon the analysis of a small number of ambient state variables. In particular, the equations of the model accurately fit recorded data of temperature, relative humidity and carbon dioxide concentration in different workplaces. For validation, data were obtained under different conditions and with different sensors. In particular, we designed and fabricated a wireless sensor that measures and transmits data to a remote device and we also applied our model to data collected using a commercial sensor. For each case, information was obtained that could be used to understand and predict the evolution of ambient variables that impact thermal comfort and energy consumption in buildings. The tools presented here can thus be of great interest to achieve affordable, smart energy-efficient buildings, while adhering to environmental laws and comfort for work spaces.
- Escola Politècnica Superior d'Alcoi Spain
- University of A Coruña Spain
- Universidade de Vigo Spain
- Universidade de Vigo Spain
- Escola Politècnica Superior d'Alcoi Spain
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
