Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis

Authors: Taehoon Hong; Minhyun Lee; Jimin Kim; Choongwan Koo; Choongwan Koo; Kwangbok Jeong;

Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis

Abstract

Abstract The solar photovoltaic (PV) system is known as one of the most outstanding new renewable energy systems for achieving the nearly zero energy building (nZEB). For the continuous deployment of the solar PV system in urban environments, it is crucial to estimate the rooftop solar PV potential. Urban areas, however, where high-rise buildings abound, are not always suitable for solar PV installation. Therefore, it is important to accurately estimate the available rooftop area considering the shadows from the surrounding buildings for reliable rooftop solar PV potential estimation. Therefore, this study proposed a method for estimating the rooftop solar PV potential by analyzing the available rooftop area through Hillshade analysis. Toward this end, the rooftop solar PV potential was estimated through the following hierarchical process: (i) calculation of the physical potential; (ii) calculation of the geographic potential; and (iii) calculation of the technical potential. For accurate estimation of the rooftop solar PV potential, the geographic potential (i.e., the available rooftop area) was explored in detail by analyzing the shadow based on the location of the sun through Hillshade analysis. By applying the proposed method to the Gangnam district in Seoul, South Korea, this study estimated the physical, geographic, and technical potentials on hourly, monthly, and annual bases. Overall, the physical, geographic, and technical potentials in the Gangnam district were found to be 9,287,982 MW h, 4,964,118 m 2 , and 1,130,371 MW h, respectively. These rooftop solar PV potential results can be used in establishing solar policies by analyzing the different levels of the rooftop solar PV potential on hourly, monthly, and annual bases.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 1%
Top 10%
Top 1%