
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers

handle: 20.500.14243/317063 , 11570/3096657
In this paper, an innovative adsorptive chiller based on 3 hybrid adsorbers is presented as well as results of the first testing campaign performed under real HVAC operating conditions. The prototype presents two main innovative features aimed to achieve high values of cooling power density: (i) a new architecture, with 3 adsorbers connected to a single evaporator and condenser, that allows to perform an advanced machine's management strategy employing unbalanced durations of the isobaric ads-/desorption steps, (ii) hybrid adsorbers realized embedding microporous Silica Gel loose grains into aluminium finned flat tube heat exchangers previously coated with the Mitsubishi AQSOA FAM Z02 sorbent. Water was selected as refrigerant while up to now the machine operates without any mass/heat recovery.
Adsorption chiller, 3 adsorbers layout; Adsorption chiller; Hybrid adsorber; Civil and Structural Engineering; Energy (all), Hybrid adsorber, 3 adsorbers layout
Adsorption chiller, 3 adsorbers layout; Adsorption chiller; Hybrid adsorber; Civil and Structural Engineering; Energy (all), Hybrid adsorber, 3 adsorbers layout
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
