Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations

Authors: Lu Wang; Ronald W. Yeung;

On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations

Abstract

Abstract The flow past a Bach-type vertical-axis wind or current turbine is simulated using a viscous Discrete-Vortex Method at a Reynolds number of 1500. The main purpose of the study is to evaluate the suitability of Bach-type turbines for use as micro-scale energy harvesters that can be applied to power, for example, sensor nodes of a wireless sensor network. The maximum power coefficient of the turbine operating at a prescribed constant tip-speed ratio is found to be 0.18, which is comparable to the performance of the same turbine at much higher Reynolds numbers, thus indicating only minimal performance penalty for miniaturization. The speed of the turbine has a strong influence on the evolution of vortical flow structures. A new wake-capturing mechanism that boosts the performance of the turbine is discovered from the simulations for a certain range of tip-speed ratios where the vortex shed by the advancing blade helps drive the returning blade. In addition to prescribed rotation, free rotation of a steel Bach-type turbine in water is also investigated. Significant fluctuation in angular velocity over one period of rotation is observed. This speed fluctuation is found to be detrimental to energy extraction, reducing the maximum power coefficient to approximately 0.16. The estimated power generating capacity of a micro-scale turbine indicates that it can significantly extend the life expectancy of a wireless sensor node or even maintain the node in a low-power state indefinitely.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
bronze