

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks

Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time, energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this paper, we present a community microgrid with photovoltaic systems, wind turbines, and fuel cell electric vehicles that are used to provide vehicle-to-grid power when renewable power generation is scarce. Excess renewable power generation is used to produce hydrogen, which is stored in a refilling station. A central control system is designed to operate the system in such a way that the operational costs are minimized. To this end, a hybrid model for the system is derived, in which both the characteristics of the fuel cell vehicles and their traveling schedules are considered. The operational costs of the system are formulated considering the presence of uncertainty in the prediction of the load and renewable energy generation. A robust min-max model predictive control scheme is developed and finally, a case study illustrates the performance of the designed system.
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
- Technical University Eindhoven Netherlands
- Technical University Eindhoven Netherlands
- Delft University of Technology Netherlands
Hybrid systems, Monitoring, Policy and Law, Mechanical Engineering, Vehicle-to-grid, 600, Building and Construction, Management, Energy(all), Energy management systems, SDG 7 - Affordable and Clean Energy, SDG 7 – Betaalbare en schone energie, Civil and Structural Engineering
Hybrid systems, Monitoring, Policy and Law, Mechanical Engineering, Vehicle-to-grid, 600, Building and Construction, Management, Energy(all), Energy management systems, SDG 7 - Affordable and Clean Energy, SDG 7 – Betaalbare en schone energie, Civil and Structural Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 7 download downloads 76 - 7views76downloads
Data source Views Downloads TU Delft Repository 7 76


