Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Greening cement in China: A cost-effective roadmap

Authors: Yuan Xu; Zengwei Yuan; Xuewei Liu; Songyan Jiang;

Greening cement in China: A cost-effective roadmap

Abstract

Cement is a critical material for urbanization, but its energy-intensive production creates serious potential environmental impacts. As further air pollutant mitigation become more expensive and difficult, ‘co-control’ measure by new energy-efficient technologies is proposed to bring co-benefits. In this study we conducted a cost-effectiveness analysis to evaluate available new technologies in Chinese cement industry. The analysis verified the findings of recent studies that many technologies have huge co-control potential, but we also found the heterogeneity and conflict in different parameters of certain technologies that has not declared by existing studies. The finding indicates the necessity to design the technology promotion roadmap. We obtained a technology promotion roadmap by establishing a multi-objective optimization model and it proves to be the best solution for achieving energy saving, PM2.5, SO2 and CO2 abatement compared to single-objective optimization models. Furthermore, pollutant emissions and energy consumption of the cement industry under four control scenarios are projected for 2010–2030. Under integrated measure scenario combining technology promotion and product structure adjustment, energy consumption will drop back to 2006–2007 level by 2030. The major air pollutant emissions will be ∼44% lower than business-as-usual scenario and the CO2 emission will be reduced by ∼15%. The annual monetary benefit of technology promotion is estimated to be 396.5 billion RMB Yuan in 2030. The findings verify the co-control strategy and update our understanding of new technologies implementation. The technology promotion roadmap and scenario analysis results are supportable for future policy-making of cement industry.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%