
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets

handle: 10044/1/46006
Biomass-based power generation combined with CO2 capture and storage (Biopower CCS) currently represents one of the few practical and economic means of removing large quantities of CO2 from the atmosphere, and the only approach that involves the generation of electricity at the same time. We present the results of the Techno-Economic Study of Biomass to Power with CO2 capture (TESBiC) project, that entailed desk-based review and analysis, process engineering, optimisation as well as primary data collection from some of the leading pilot demonstration plants. From the perspective of being able to deploy Biopower CCS by 2050, twenty-eight Biopower CCS technology combinations involving combustion or gasification of biomass (either dedicated or co-fired with coal) together with pre-, oxy- or post-combustion CO2 capture were identified and assessed. In addition to the capital and operating costs, techno-economic characteristics such as electrical efficiencies (LHV% basis), Levelised Cost of Electricity (LCOE), costs of CO2 captured and CO2 avoided were modelled over time assuming technology improvements from today to 2050. Many of the Biopower CCS technologies gave relatively similar techno-economic results when analysed at the same scale, with the plant scale (MWe) observed to be the principal driver of CAPEX (£/MWe) and the cofiring % (i.e. the weighted feedstock cost) a key driver of LCOE. The data collected during the TESBiC project also highlighted the lack of financial incentives for generation of electricity with negative CO2 emissions.
- Alstom (France) France
- University of Cambridge United Kingdom
- Nanyang Technological University Singapore
- Newcastle University United Kingdom
- Imperial College London United Kingdom
Technology, Engineering, Chemical, 330, Energy & Fuels, BIOENERGY, FEASIBILITY, Techno-economics, Chemical, Carbon capture and storage (CCS), bioenergy, Scenarios and forecasting, 09 Engineering, Bioenergy Power generation, Engineering, Biopower, BECCS, Biomass, BIO-ENERGY, NEGATIVE EMISSIONS TECHNOLOGIES, biopower, 14 Economics, Science & Technology, Energy, biomass, power generation, carbon capture and storage (CCS), techno-economics, CARBON-DIOXIDE CAPTURE, scenarios and forecasting, FACILITIES, ALGAE-DERIVED BIODIESEL, 620, MODEL, STORAGE
Technology, Engineering, Chemical, 330, Energy & Fuels, BIOENERGY, FEASIBILITY, Techno-economics, Chemical, Carbon capture and storage (CCS), bioenergy, Scenarios and forecasting, 09 Engineering, Bioenergy Power generation, Engineering, Biopower, BECCS, Biomass, BIO-ENERGY, NEGATIVE EMISSIONS TECHNOLOGIES, biopower, 14 Economics, Science & Technology, Energy, biomass, power generation, carbon capture and storage (CCS), techno-economics, CARBON-DIOXIDE CAPTURE, scenarios and forecasting, FACILITIES, ALGAE-DERIVED BIODIESEL, 620, MODEL, STORAGE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).133 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
