Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy

Authors: Unternährer, Jérémy; Moret, Stefano; Joost, Stéphane; Maréchal, François;

Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy

Abstract

Abstract Given the challenges related to climate change and dependency from fossil fuels, modification of the energy systems infrastructure to increase the share of renewable energy is a priority in urban energy planning. The high heating density in cities makes it more economically competitive to deploy district heating (DH), which is essential for large-scale integration of renewable energy sources. Combining georeferenced data with district heating design methods allows to improve the quality of the system design. However, increasing the spatial resolution can lead to intractable model sizes. This paper presents a methodology to spatially assess the integration of DH networks in urban energy systems. Given georeferenced data of buildings, resource availability and road networks, the methodology allows the identification of promising sites for DH deployment. First, an Integer Linear Programming (ILP) model divides the urban system into spatial clusters (of buildings). Graph theory and routing methods are then used to optimally design the DH configuration in each cluster considering the road network in the routing algorithm. A Mixed-Integer Linear Programming (MILP) model is formulated in order to economically evaluate the DH integration over the whole urban area. The proposed methodology is applied to an example case study, evaluating the use of geothermal energy (deep aquifer) for direct heat supply. The results of the optimization show the interest of deploying geothermal DH in some of the clusters. The profitability of DH integration is strongly affected by the spatial density of the heating demand.

Country
Switzerland
Keywords

Optimization, Geographic Information Systems (GIS), District Heating Network, Urban system, Urban energy systems, Spatial Clustering, Routing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 1%
Top 10%
Top 1%
bronze